令和元年度

酸性雨調查報告書

環境科学調査センター

1.	湿性	降下华	勿																															
	Ι	調る	查 目	的	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	П	調 3	查 地	点	•	•		•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	1
	Ш	調 3	查方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
9	IV 乾性	調了		手果	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
۷.	平石[土]	平 1 1	P/J																															
	Ι	調了	查 目	的	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	3
	П	調面	查 地	点	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	3
	Ш	調 3	查方	法	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	3
	IV	調面	査 結	手果	•					•	•	•	•	•	•		•			•		•	•	•	•	•	•	•			•		1	4
3.	参考	文献		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	2 0
資料	· 測:	定結り	果・			•		•					•	•							•	•		•	•	•	•						. 2	2 1

1. 湿性降下物

I 調査目的

本市では昭和58年度後期より酸性雨調査を継続して行っており(昭和58年度後期~62年度は環境庁(現:環境省)が実施した酸性雨長期モニタリング指定地区(全国7地区)として受託)、令和元年度も長期的な酸性雨の監視のため、1地点での測定を継続した。

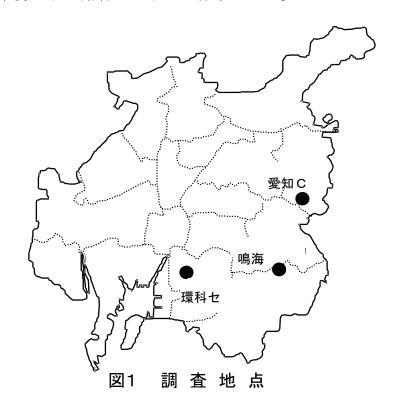
Ⅱ 調査地点

調査地点は、次の通りである。 (図 1)

ア 名古屋市環境科学調査センター(以下、環科セとする)

所在地 南区豊田

採取装置 降水時開放型捕集装置


(小笠原計器製作所: US330)

設置場所 屋上

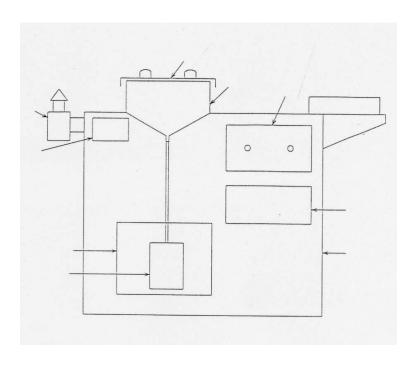
なお、平成 12 年度より、一週間の捕集を従来の酸性雨ろ過式採取器から、非降雨時における乾性降下物の影響を除くため、Wet-Onlyの降雨時開放型捕集装置に変更した。

また、昭和 58 年度から平成 2 年度までは、名東区の愛知カンツリー倶楽部(以下、愛知 C とする)で、ろ過式採取器による測定を行っていたが、クラブハウスの建て替えにより採取ができなくなり、鳴海配水場(以下、鳴海とする)に変更した。

さらに、昭和 58 年度から平成 19 年度までは、南区の環科セと鳴海にて、ろ過式採取器または降雨時開放型捕集装置による採取を行っていたが、平成 20 年度~21 年度は鳴海のみ、平成 22 年度からは環科セのみでの採取とした。

Ⅲ 調査方法

調査には、降水時開放型捕集装置[以下、ウェットオンリー(Wet-Only)](図 2)を使用した。


Wet-Only は感雨器と移動式の蓋を備えており、非降雨時における粉塵などの乾性降下物の混入を防ぎ、降雨時の湿性降下物のみを捕集する。また、冷蔵庫を有し、捕集した雨水を回収時まで冷蔵保存する。採取期間は原則として一週間であり、期間中の雨水はまとめて複数の降水も1検体とする。

Wet-Only の測定項目を表 1 に示す。また、各測定項目の分析方法とその検出限界を表 2 に示す。

月毎のデータを算出する時の区切りについて、Wet-Only は上記のように週単位の採取をしているため、通常の月の区切りとは一致していない。

各機器の令和元年度における集計期間を表3に示す。

分析の結果、得られたデータの信頼性について、イオンバランスの検定および電気 伝導率の計算値と測定値の比較により QA/QC を行い、必要に応じて再分析を実施し た。しかし、再分析の結果、なお信頼性の範囲を超える検体もあった。

W e t - O n l y

図 2 湿性沈着物捕集装置図

表 1 測定項目

試料	Wet-Only	捕集装置
測定項目	湿性	ろ過残渣
рН	0	-
EC	0	-
降下物量	-	0
$\mathrm{SO}_4{}^{2}$	0	-
NO ₃ -	0	-
C1-	0	-
NH ₄ +	0	-
Ca ²⁺	0	-
Mg ²⁺	0	-
K+	0	-
Na+	0	-

表 2 分析の方法と検出限界

分析項目	分析方法	使用機器	検出限界
рН	ガラス電極法	堀場 F-72	0.001
EC	導電率計による方法	DKK CM-30R	0.01(25°C μS/cm)
$\mathrm{SO}_4{}^{2^-}$	イオンクロマト法	ICS1000	0.0049(µg/mL)
NO ₃ -	同上	同上	0.0055(μg/mL)
Cl-	同上	同上	0.0033(µg/mL)
NH ₄ ⁺	同上	ICS1000	0.0064(μg/mL)
Ca ²⁺	同上	同上	0.0048(μg/mL)
$ m Mg^{2+}$	同上	同上	0.00066(μg/mL)
K+	同上	同上	0.0042(μg/mL)
Na ⁺	同上	同上	0.0036(μg/mL)

表 3 令和元年度月別の集計期間

年 月	Wet-Only 捕集装置
平成 31/4	4/2 ~ 4/26
令和元/5	$4/26 \sim 5/27$
6	$5/27 \sim 6/24$
7	$6/24 \sim 8/5$
8	8/5 ~ 9/2
9	$9/2 \sim 9/30$
10	$9/30 \sim 10/28$
11	$10/28 \sim 11/25$
12	$11/25 \sim 1/6$
令和 2/1	1/6 ~ 2/3
2	$2/3 \sim 3/2$
3	$3/2 \sim 3/30$

IV 調査結果

(1) 降雨状況

令和元年度は、オーバーフローは 1 回認められた。令和元年度の年間降水量は過去 10 年間(平成 21 年度~30 年度)の降水量と比較して 2 番目に多い値であった(図 3)。月別では、7 月に約 400mm、10 月に月に約 370mm と降水量が多く、年間降水量を押し上げる結果となった。7 月の降水量は活発な梅雨前線の影響を受けて全体的に多くなった。また 10 月は、前半に台風 19 号の、後半に発達した低気圧の影響が大きく降水量が多くなった。降水量が最も少ない月は 11 月の 21mm であった。

令和元年度の環科セの年間降水量(Wet-Only による貯水量より算出)は、1726mm(平成 30 年度: 1447mm)であった。

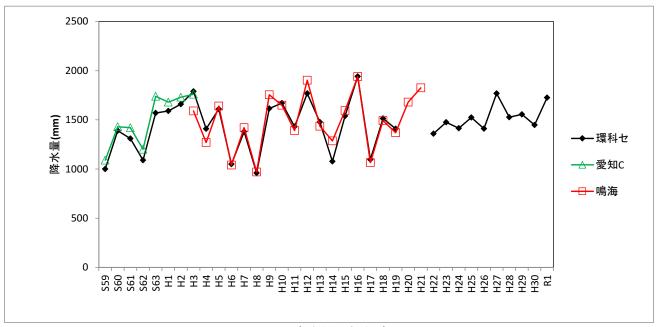


図3 降水量の経年変化

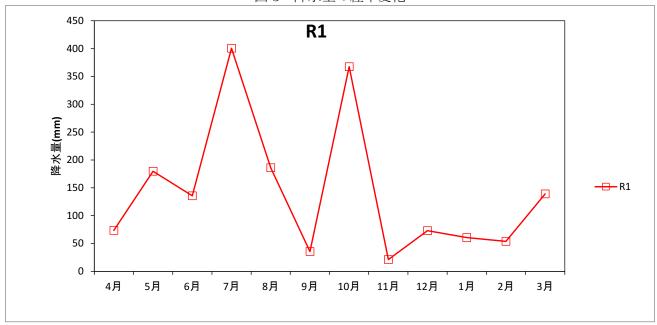


図4 月別降水量

(2) p H

令和元年度の加重年平均 p H は 5.21 であった。

経年変化を図 5、表 4 に示す。令和元年度の加重年平均 p H は平成 30 年度とほぼ同じ値となった。近年は降水中のイオン成分が減少してきているため、平成 22 年度以降の p H は平成 26, 29 年を除いて 5 を上回っており、高い値で推移している。

週毎のpH 別検体数を表 5 に示す。pH4 以下の検体は令和元年度はなかった。pH が 5 以下の検体数およびpH5 以上の検体数は平成 30 年度とほぼ同様の傾向を示しており、年間の加重平均値は平成 30 年度と令和元年度はほぼ同じ値となった。

最高、最低、平均(単純平均および加重平均)を表 6 に、 p H 加重平均値経月変化を図 6 に示す。月ごとの値では、降水量の多い夏から秋に p H が高くなり、降水量の少ない冬に p H が低くなった。

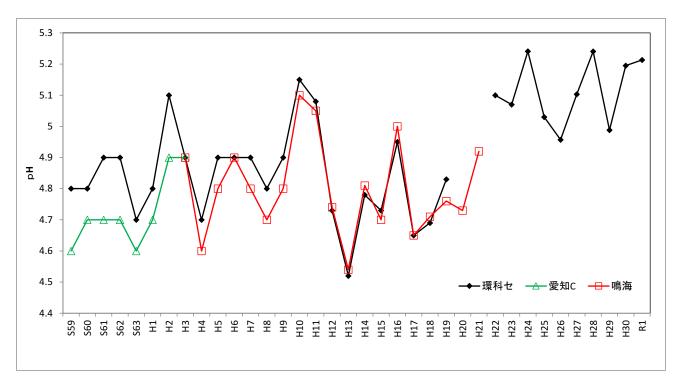


図 5 加重平均 p H の経年変化率(ろ過式捕集装置と Wet-Only 捕集装置) (ろ過式捕集装置:昭和 59~平成 11、Wet-Only 捕集装置:平成 12~)

表 4 年降水量と加重年平均 p H

		降水量 mm			рH	
	環科セ	愛知 C	鳴海	環科セ	愛知 C	鳴海
S59	1000	1090	-	4.8	4.6	-
S60	1390	1430	-	4.8	4.7	-
S61	1310	1420	-	4.9	4.7	-
S62	1090	1200	-	4.9	4.7	-
S63	1570	1740	-	4.7	4.6	-
H1	1590	1680	-	4.8	4.7	-
H2	1660	1730	-	5.1	4.9	-
Н3	1790	1760	1590	4.9	4.9	4.9
H4	1410	-	1270	4.7	-	4.6
H5	1610	-	1640	4.9	-	4.8
Н6	1050	-	1040	4.9	-	4.9
H7	1380	-	1420	4.9	-	4.8
Н8	960	-	970	4.8	-	4.7
Н9	1620	-	1760	4.9	-	4.8
H10	1671	-	1648	5.15	-	5.10
H11	1432	-	1392	5.08	-	5.05
H12	1769	-	1909	4.73	-	4.74
H13	1477	-	1436	4.52	-	4.54
H14	1078	-	1306	4.78	-	4.81
H15	1539	-	1594	4.73	-	4.70
H16	1942	-	1940	4.95	-	5.00
H17	1096	-	1064	4.65	-	4.65
H18	1515	-	1492	4.69	-	4.71
H19	1409	-	1369	4.83	-	4.76
H20	-	-	1680	-	-	4.73
H21	-	-	1825	-	-	4.92
H22	1360	-	-	5.10	-	-
H23	1475	-	-	5.05	-	-
H24	1415	-	-	5.24	-	-
H25	1524	-	-	5.03	-	-
H26	1411	-	-	4.96	-	-
H27	1769	-	-	5.10	-	-
H28	1526	-	-	5.24	-	-
H29	1556	-	-	4.99	-	-
H30	1447	=	-	5.20	=	-
R1	1725	-	-	5.21	-	_

(S59~H11: ろ過式捕集装置) (H12~: Wet-Only 捕集装置)

昭和 58 年度は、年度半ばから調査を開始したため、表から除外している。 平成 9 年度まで降水量は整数第 2 位(第 1 位四捨五入)、pH は小数点第 1 位までの表示、平成 10 年度から降水量は整数第 1 位、pH は小数点第 2 位まで表示した。

表 5 湿性降下物試料の p H 分布

Wet-Only 捕集装置 (環科セ)

1100 Olling 1	1117144		× 1 1 — ,	<i>'</i>									
月	31 年	1 年								2 年			
рН	4	5	6	7	8	9	10	11	12	1	2	3	計
6.0<	1	0	0	0	0	0	0	0	0	0	0	0	1
$5.0 < \le 6.0$	3	3	3	4	2	2	3	2	2	1	1	2	28
$4.0 < \le 5.0$	0	0	1	1	1	0	1	1	3	3	2	2	15
≦4.0	0	0	0	0	0	0	0	0	0	0	0	0	0
合計	4	3	4	5	3	2	4	3	5	4	3	4	44

区分には少数第 2 位までのデータを用いたため、後の資料からの集計と異なる場合がある。 (例えば、5.01 は四捨五入で5.0 となるが、ここでは5.0< に数えた)。捕集期間は月の集計日の違いにより、通常の月単位と異なる。

表 6 Wet-Only 捕集装置による湿性降下物試料成分の範囲、平均値(環科セ)

		最高	最低	単純平均	加重平均
рН		6.47	4.45	5.21	5.21
EC	μS/cm	40.00	2.51	14.79	9.25
$\mathrm{SO}_4{}^{2 ext{-}}$		5.289	0.145	1.486	0.842
NO_3		6.467	0.097	1.404	0.745
Cl-		5.185	0.066	0.880	0.615
$\mathrm{NH_{4}^{+}}$		2.483	0.044	0.458	0.249
Na+	μg/mL	2.649	0.030	0.455	0.313
K+		0.399	0.006	0.075	0.042
Ca ²⁺		1.503	0.011	0.233	0.118
Mg ²⁺		0.372	0.011	0.070	0.045

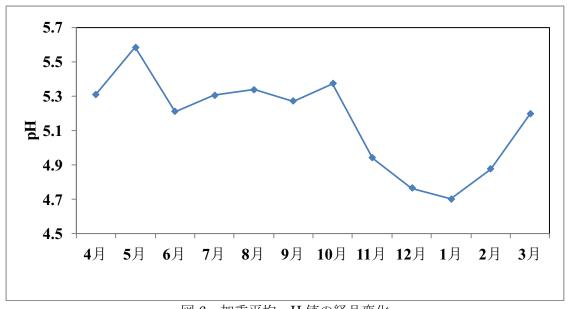


図6 加重平均pH値の経月変化

(3) EC および各成分

年間合計

1725.59

5.20

11.57

0.93

令和元年度の環科セの最高濃度、最低濃度、平均濃度を表 6 (8ページ)、加重平均濃度の経月変化を表 7、図 7 に示す。

降水量の少なかった 11 月はほとんどの成分が高い濃度を示した。8 月および 9 月には Cl·、Na+、Mg²+が高い値を示したが、南の海上からの風にのって海塩粒子が飛来したことに起因すると考えられる。

また、それぞれの週における Na^+/Cl : 比や、主要な陰イオンである $[SO_4^{2-}]+[NO_3^-]$ と主要な陽イオンである $[NH_4^+]+[H^+](+[Ca^{2+}])$ について比の変化を図 8(10 ページ) に示す。

 Na^+/Cl^- 比は変動しており、年間の平均値は 0.81 であり海塩の組成比(約 0.85)と比べやや低い結果となった。

([SO₄²·]+[NO₃·])/([NH₄+]+[H+])と([SO₄²·]+[NO₃·])/([NH₄+]+[H+]+[Ca²+])については、おおむね一致していたが、9 月に([SO₄²·]+[NO₃·])/([NH₄+]+[H+])が約 2.5 と非常に大きくなる例も認められた。

平成 12 年度以降の EC および各成分の加重年平均値の経年変化を図 9 に示す。多くの成分で経年的に減少傾向が認められ、令和元年度も平成 30 年度に比べすべての成分で減少した。ただし海塩粒子の成分である Cl⁻、Na⁺、Mg²⁺については経年的には依然として増加傾向が認められている。

全国環境研協議会 酸性雨広域大気汚染調査研究部会の報告 1)では、汚染物質について移流の影響を示唆しており、中国では SO_2 排出量が平成 19 年にピークを迎え、その後漸減しており、 NO_X 排出量は増加を続けているとのことであった。しかし名古屋に降った酸性雨に含まれる SO_4 2·および NO_3 の経年変化は平成 17 年をピークとして減少傾向にあり、別の発生源の要因も大きく影響していると考えられる。

各成分の濃度について、増加または減少の傾向があるのか、あるいは年毎の一定のぶれの範囲内(ex. 降雨量による影響のぶれ等)なのかの判断の為には、今後数年にわたる傾向の分析が必要となる。

月	降水量	рΗ	EC	$\mathrm{SO}_4{}^{2 ext{-}}$	NO_{3}	Cl-	$\mathrm{NH_{4^+}}$	Na+	K^+	Ca^{2+}	Mg^{2+}		
	mm		μS/cm	$\mu \mathrm{g/mL}$									
4月	73.34	5.31	14.21	1.47	1.82	0.65	0.54	0.38	0.13	0.33	0.07		
5月	179.78	5.58	4.91	0.44	0.34	0.27	0.12	0.16	0.03	0.09	0.02		
6月	135.59	5.21	11.53	1.11	1.01	0.81	0.34	0.43	0.05	0.14	0.07		
7月	400.64	5.31	6.67	0.67	0.55	0.31	0.21	0.15	0.03	0.10	0.02		
8月	185.99	5.34	13.39	1.13	0.69	1.78	0.31	0.93	0.05	0.14	0.10		
9月	35.35	5.27	13.15	1.15	1.64	1.29	0.26	0.66	0.04	0.42	0.09		
10 月	367.52	5.37	4.86	0.37	0.34	0.26	0.11	0.13	0.01	0.04	0.03		
11月	21.15	4.94	19.98	2.44	1.74	1.09	0.68	0.60	0.05	0.36	0.10		
12 月	73.06	4.76	15.31	1.31	1.31	0.38	0.45	0.17	0.06	0.08	0.03		
1月	60.57	4.70	21.95	1.98	1.39	1.39	0.46	0.67	0.10	0.16	0.08		
2月	53.73	4.88	15.11	1.50	1.28	0.83	0.35	0.38	0.09	0.18	0.07		
3 月	138.89	5.20	9.96	0.79	0.97	0.57	0.27	0.25	0.07	0.09	0.04		

0.96

0.30

0.48

0.049

0.14

0.070

表 7 各月の加重平均濃度:Wet-Only 捕集装置(環科セ)

0.84

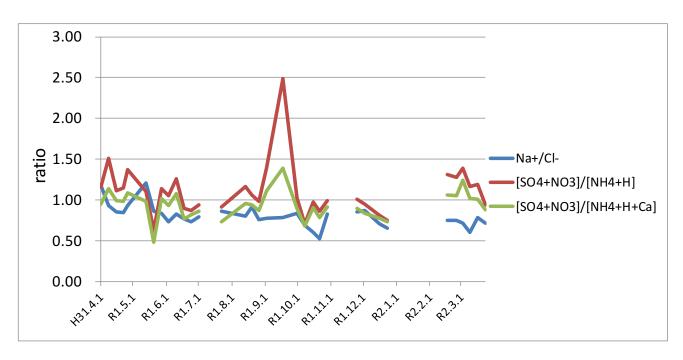


図8 イオン成分のバランスについて

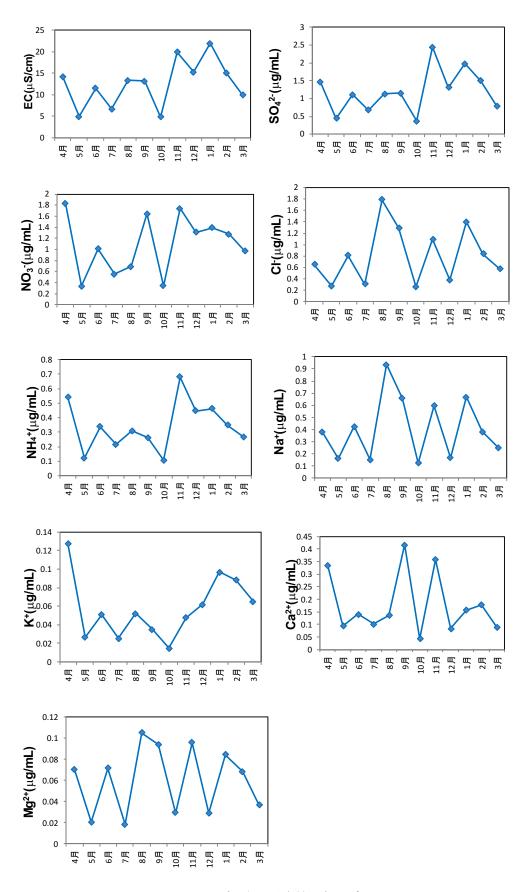


図7 加重月平均値の経月変化

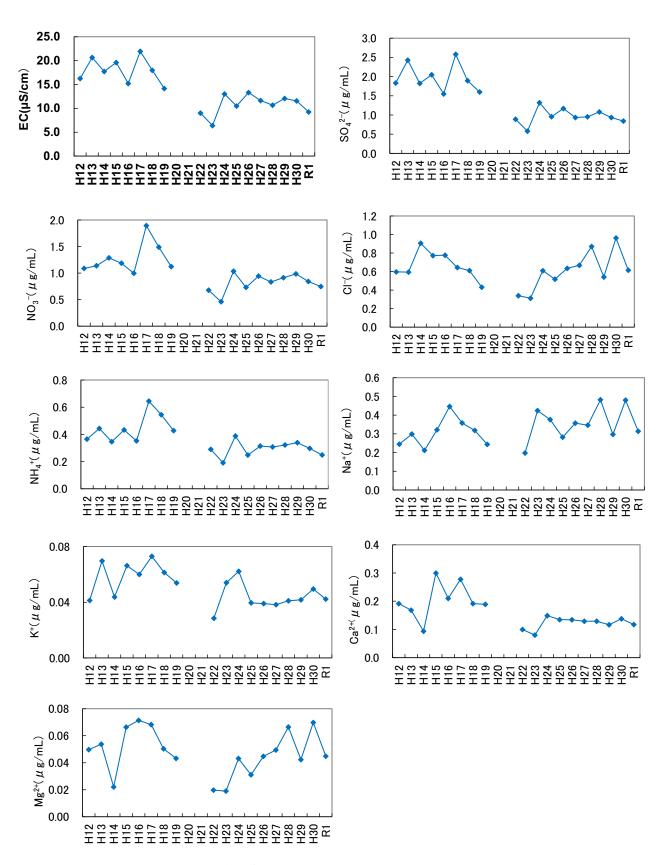


図 9 平成 12 年度以降の EC および各成分の加重年平均値の経年変化

2. 乾性降下物

I 調査目的

地方自治体の環境研究所を会員とする全国環境研協議会(以下全環研)では、日本を網羅する全国調査を平成3年度から共同で行っている。全環研調査は酸性沈着の全国状況把握を目的とし、①国際標準である降水時開放型捕集装置による湿性沈着調査、②フィルターパックおよびパッシブ法による乾性沈着調査、③インファレンシャル法による乾性沈着量評価、および湿性と合わせた総沈着量の評価を行っている。乾性調査では全環研調査の手法が環境省調査およびEANETに活用されていることなどから、この手法による調査データは環境省データと十分に比較可能である。

名古屋市もこの共同調査に参加し、酸性沈着の把握のため、前章の湿性降下物調査 (①)だけでなく、フィルターパック法による乾性降下物調査(②)も行ってきた。 令和元年度も乾性沈着量の把握のため、乾性降下物調査を行った。

Ⅱ 調査地点

令和元年度の調査地点は、湿性降下物調査と同じ名古屋市環境科学調査センター屋上である。

平成 15 年度から平成 21 年度までは、鳴海にて試料採取を行っていたが、平成 22 年度以降は環科セに調査地点を変更した。

Ⅲ 調査方法

乾性沈着調査はフィルターパック法により行った。フィルターパック法は、1 段目で粒子状物質を、2 段目で HNO_3 などを、3 段目で SO_2 、 HCl を、4 段目で NH_3 を捕集する 4 段ろ紙法を用いた。

IV 調査結果

(1)ガス状成分

平成 22 年から 31 年度の環科セのガス状成分の年平均濃度、および、鳴海の平成 15 年度から平成 21 年度の経年変化を表 8 に、グラフを図 10 に示す。平成 18、19 年度は 欠測期間が長いため参考値とした。経年的な変化をみると、 SO_2 および NH_3 で減少傾向がみられ、 HNO_3 および HCl では横ばいであった。

また、令和元年度のガス状成分の月平均濃度を表 9、月平均濃度の令和元年度と平成 30 年度との比較を図 11 に示す。すべての成分で、年度の前半で高濃度、後半で低濃度となった。春季から夏季には NH_3 、 NO_3 や HCl といった物質は粒子化せずにガス状態にあるため高濃度となり、冬季には粒子化してガス状態として捕集される量が少なくなった可能性がある。また HNO_3 については、二次生成の影響も考えられる。これらの傾向は、過去の全国的な変化 1 とも一致しており、一般的にみられる季節変動だと考えられる。令和元年度と平成 30 年度の比較では概ね同様の推移を示した。

表 8 ガス状成分の年平均濃度

(nmol/m³)

年度	$\mathrm{SO}_2(\mathrm{g})$	HNO ₃ (g)	HCl(g)	NH ₃ (g)	備考
H15	70.2	27	19.3	206.6	鳴海
H16	63.2	26.9	27.2	190.6	鳴海
H17	63.1	31.7	26.8	195.3	鳴海
H18	(45.8)	(25.5)	(23.0)	(175.8)	鳴海、7か月欠測
H19	(51.6)	(8.7)	(19.2)	(148.5)	鳴海、7か月欠測
H20	50.5	30.7	32.0	148.4	鳴海
H21	32.9	22.6	22.1	145.9	鳴海
H22	40.3	19.4	23.8	130.7	環科セ
H23	45.0	18.2	26.7	136.1	環科セ
H24	48.6	24.2	30.6	130.4	環科セ
H25	41.3	25.4	32.2	104.3	環科セ
H26	34.3	22.1	22.9	85.4	環科セ
H27	47.4	26.0	31.3	130.2	環科セ
H28	33.1	24.8	42.3	102.5	環科セ
H29	34.9	23.1	28.2	105.1	環科セ
H30	37.7	24.4	37.0	117.4	環科セ
H31	37.0	25.0	40.7	131.2	環科セ

表 9 ガス状成分の月平均濃度(環科セ)

(nmol/m³)

	$\mathrm{SO}_2(g)$	HNO ₃ (g)	HCl(g)	NH ₃ (g)
H31年4月	35.5	21.9	50.0	139.5
R1年5月	44.4	28.8	44.4	157.8
R1年6月	47.8	44.1	47.5	142.4
R1年7月	62.0	57.9	54.1	171.1
R1年8月	45.5	29.9	65.9	168.0
R1年9月	42.9	31.6	52.8	144.3
R1年10月	29.1	19.7	35.5	115.8
R1年11月	35.8	26.9	40.2	140.4
R1年12月	26.6	8.2	21.2	90.0
R1年1月	20.2	7.6	18.5	78.8
R1年2月	23.4	9.2	24.8	90.9
R1年3月	30.4	13.8	33.1	135.9
最大値	62.0	57.9	65.9	171.1
最小値	20.2	7.6	18.5	78.8

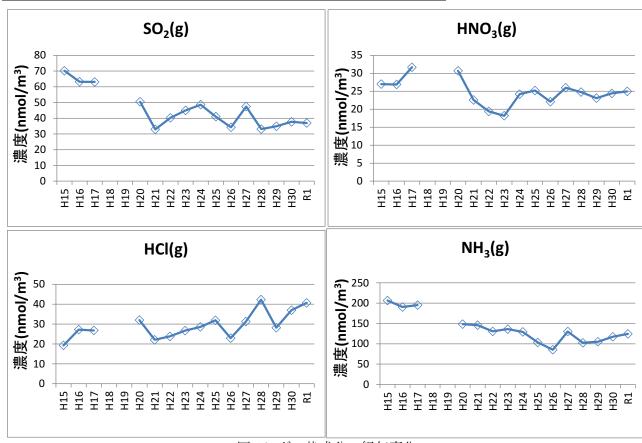


図 10 ガス状成分の経年変化

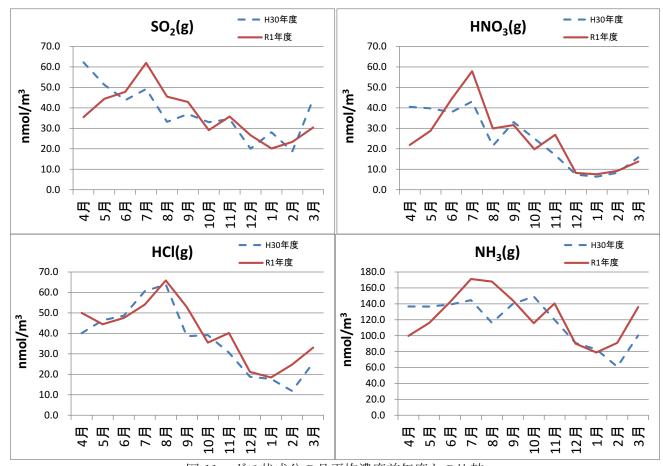


図 11 ガス状成分の月平均濃度前年度との比較

(2)粒子状成分

令和元年度の粒子状成分の年平均濃度および平成 15 年度からの経年変化を表 10 および図 12 に示す。 $Na^{+(p)}$ 、 $Cl^{-}(p)$ といった海塩粒子の成分で、平成 30 年度の値を上回る結果となった。また、長期的には $NH_4^{+}(p)$ について、減少の傾向がみられた。

また、令和元年度の粒子状成分の月平均濃度を表 11、月平均濃度の令和元年度と平成 30 年度との比較を図 13 に示す。 NO_3 (p)、Cl (p)は冬季に濃度が高くなり、気温低下による粒子化の影響を受けていると考えられる。nss- SO_4 2 (p)や NH_4 4 (p)は春から夏に高濃度となっており、光化学反応による二次生成や大陸からの移流の影響が考えられる。nss-Ca 2 4 (p)は春に高濃度となっており、黄砂の飛来による影響が考えられる。

	SO ₄ 2·(p)	nss-	NO_3 (p)	Cl·(p)	Na+(p)	K+(p)	Ca2+(p)	nss-	Mg2+(p)	NH_4 + (p)
		SO ₄ 2·(p)						Ca2+(p)		
H15	48.2	47.1	51.7	12.2	18.4	4.1	6.7	6.3	3.0	106.2
H16	50.9	49.5	46.1	16.4	23.1	3.8	7.5	7.0	3.9	103.9
H17	51.5	50.4	45.1	14.4	18.6	2.7	8.2	7.8	2.6	109.6
$H18^{2)}$	(31.2)	(30.6)	(230)	(6.2)	(9.8)	(1.4)	(4.2)	(3.9)	(1.2)	(62.0)
H19 ²⁾	(36.0)	(35.0)	(46.2)	(17.6)	(15.9)	(3.3)	(6.0)	(5.7)	(1.6)	(87.6)
H20	44.7	43.3	36.4	9.8	23.4	3.6	6.7	6.1	2.7	83.5
H21	33.6	32.3	30.7	7.0	21.2	4.9	7.7	7.2	2.4	75.7
H22	30.2	30.0	26.5	9.7	19.0	2.5	5.1	4.7	2.3	62.4
H23	32.7	31.0	31.6	14.1	27.1	3.4	6.7	6.2	2.5	71.2
H24	39.3	37.3	36.6	16.2	32.3	3.9	7.1	6.4	3.3	72.0
H25	44.4	42.6	34.8	15.8	30.5	5.2	8.8	8.1	3.4	81.1
H26	40.2	38.5	35.7	16.4	30.9	3.6	11.6	10.9	4.1	71.6
H27	39.5	37.6	42.3	17.7	30.5	3.3	130	12.3	4.5	65.1
H28	33.8	32.0	34.3	14.9	30.5	3.0	8.2	7.5	4.1	57.5
H29	32.0	30.3	37.6	16.7	27.3	4.1	9.3	8.7	3.7	59.3
H30	30.6	28.5	33.4	21.8	33.3	3.5	9.7	9.0	4.8	53.3
R1	31.0	28.7	34.2	22.2	37.5	3.8	8.6	7.8	4.7	49.2

表 10 粒子状成分の年平均濃度 1)

(nmol/m3)

- 1) 測定地点 H15~21:鳴海、H22~31:環科セ
- 2) H18 および H19 は 7 カ月欠測だったので参考値扱いとした。

表 11 粒子状成分の月平均濃度

(nmol/m3)

	SO ₄ ² ·(p)	nss-	NO_3	Cl ⁻ (p)	Na+(p)	K+(p)	Ca2+(p)	nss-	Mg ²⁺ (p)	$NH_4^+(p)$
		SO ₄ ²⁻ (p)	(p)					Ca ²⁺ (p)		
H31.4	38.7	35.1	55.2	30.0	60.6	5.0	13.0	11.7	8.1	74.0
R1.5	32.4	29.5	34.9	26.5	48.1	4.3	12.2	11.1	6.5	54.8
R1.6	48.3	46.6	35.0	8.0	28.4	3.2	10.4	9.8	4.6	64.9
R1.7	49.3	48.1	21.0	3.8	20.8	2.8	7.4	6.9	3.4	61.2
R1.8	45.5	41.5	32.1	33.8	66.3	3.7	9.5	8.1	7.7	52.8
R1.9	28.2	25.5	31.5	18.5	45.4	3.0	9.6	8.6	5.0	31.0
R1.10	22.3	20.1	26.8	16.6	36.3	3.0	7.7	6.9	4.2	23.0
R1.11	21.7	19.9	31.3	16.3	30.0	3.8	10.0	9.4	3.9	30.1
R1.12	20.3	18.6	32.5	28.1	27.4	3.8	6.1	5.5	2.5	39.1
R2.1	16.7	15.5	29.6	21.3	19.9	1.8	4.3	3.9	1.8	36.4
R2.2	24.2	22.6	39.8	29.5	26.9	5.9	6.8	6.2	3.5	67.4
R2.3	24.4	22.0	40.5	34.1	39.9	5.7	6.4	5.5	4.9	55.6
最大値	49.3	45.3	55.2	34.1	66.3	5.9	13.0	11.5	8.1	74.0
最小値	16.7	15.5	21.0	3.8	19.9	1.8	4.3	3.9	1.8	23.0

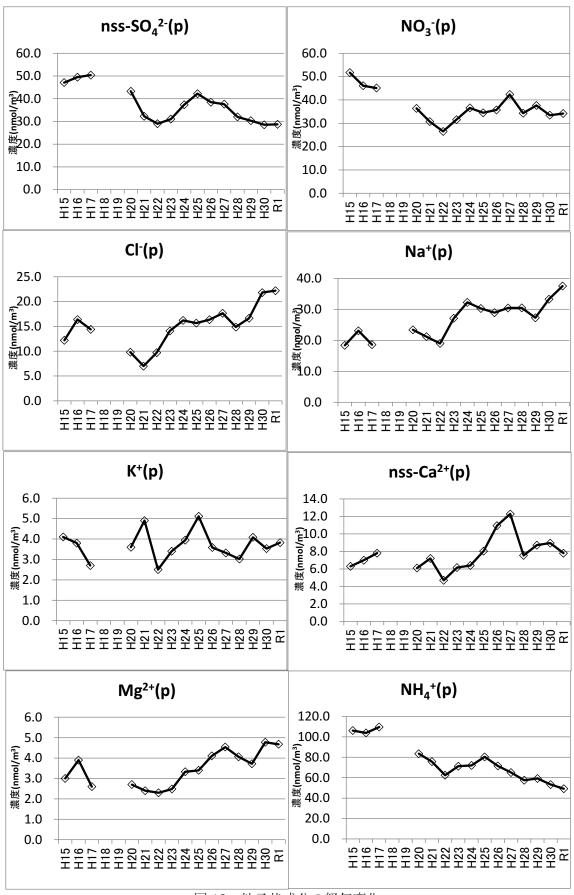


図 12 粒子状成分の経年変化

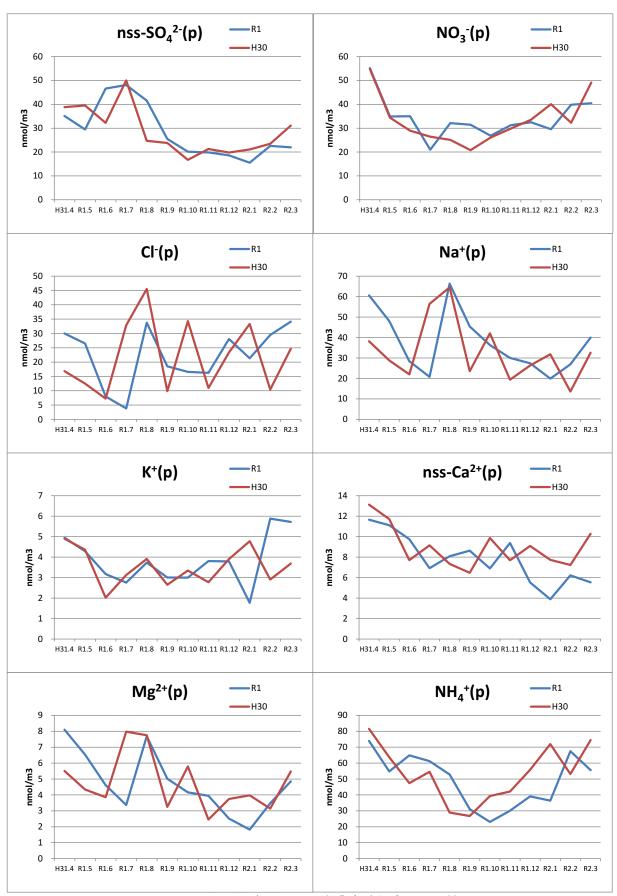


図 13 粒子状成分の月平均濃度前年度との比較

(3)ガス状および粒子状成分の総計と粒子化率

全硫酸(SO_2 (g)+nss- SO_4 ² (p)),全硝酸(HNO_3 (g)+ NO_3 (p)),全塩化物(HCl(g)+ $Cl^-(p)$),全アンモニア(NH_3 (g)+ NH_4 +(p))濃度の月平均値の経月変化と粒子化率(粒子状濃度/(粒子状濃度+ガス状濃度)を図 14に示す。

令和元年度は全塩酸を除く全ての成分について、春期に高濃度となる傾向が認められた。原因としては、越境汚染による流入が考えられる。粒子化率は全硝酸、全塩酸、全アンモニアは気温が低下する冬季に上昇する傾向があり、例年通りの変動であった。また全硫酸と全アンモニアはある程度共通した変動を示した。これは、粒子化した硫酸が対カチオンとしてアンモニウムイオンを捕獲したためと考えられる。

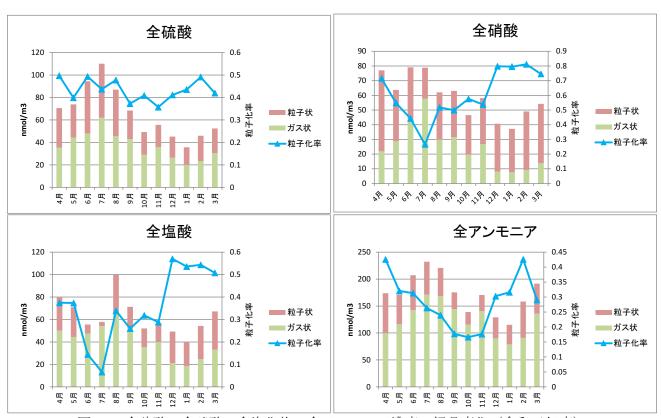


図 14 全硫酸、全硝酸、全塩化物、全アンモニア濃度の経月変化(令和元年度)

3. 参考文献

1) 第 5 次酸性雨全国調査報告書(平成 21 年度), 全国環境研会誌, 36, 106-146, 2011

資料 1 令和元年度 Wet-Only 捕集装置で捕集した湿性降下物の測定結果(環科セ)

貝们1		et Offiny m来:	i集		捕集量	降水量	オーハ゛ーフロー	
地点名	月	開始日	終了日	欠測日数	m mL	mm mm	有無	pН
	4月	H31.4.1	H31.4.8	0	177	6	無	6.5
	4月	H31.4.8	H31.4.15	0	1450	46	無	5.4
	4月	H31.4.15	H31.4.22	0	276	9	無	5.1
	4月	H31.4.22	H31.4.26	0	400	13	無	5.0
	5月	H31.4.26	R1.5.7	0	1530	49	無	5.4
	5月	R1.5.7	R1.5.13	0	0	0	無	
	5月	R1.5.13	R1.5.20	0	580	18	無	5.5
	5月	R1.5.20	R1.5.27	0	3535	113	無	5.8
	6月	R1.5.27	R1.6.3	0	1150	37	有	5.3
	6月	R1.6.3	R1.6.10	0	1420	45	無	5.2
	6月	R1.6.10	R1.6.17	0	1400	45	無	5.3
	6月	R1.6.17	R1.6.24	0	103	3	無	4.6
	7月	R1.6.24	R1.7.1	0	2780	89	無	5.3
	7月	R1.7.1	R1.7.8	0	1280	41	無	5.5
	7月	R1.7.8	R1.7.16	0	2040	65	無	4.9
	7月	R1.7.16	R1.7.22	0	3620	115	無	5.5
	7月	R1.7.22	R1.7.29	0	2860	91	無	5.5
	7月	R1.7.29	R1.8.5	0	0	0	無	
	8月	R1.8.5	R1.8.13	0	0	0	無	
	8月	R1.8.13	R1.8.19	0	2700	86	無	5.9
_	8月	R1.8.19	R1.8.26	0	880	28	無	4.8
_	8月	R1.8.26	R1.9.2	0	2260	72	無	5.3
_	9月	R1.9.2	R1.9.9	0	880	28	無	5.2
_	9月	R1.9.9	R1.9.17	0	0	0	無	
環科セー	9月	R1.9.17	R1.9.24	0	230	7	無	5.5
,	9月	R1.9.24	R1.9.30	0	0	0	無	
_	10月	R1.9.30	R1.10.7	0	980	31	無	4.6
L	10月	R1.10.7	R1.10.15	0	3240	103	無	5.7
_	10月	R1.10.15	R1.10.21	0	1860	59	無	5.4
	10月	R1.10.21	R1.10.28	0	5460	174	無	5.6
-	11月	R1.10.28	R1.11.5	0	210	7	無	5.3
-	11月	R1.11.5	R1.11.11	0	0	0	無	
-	11月	R1.11.11	R1.11.18	0	232	7	無	4.6
-	11月	R1.11.18	R1.11.25	0	222	7	無無	5.6
-	12月	R1.11.25	R1.12.2	0	640	20	無無無	5.3
-	12月	R1.12.2	R1.12.9	0	134	4	無無	5.1
	12月	R1.12.9	R1.12.16	0	0 850	97	無無	10
-	<u>12月</u> 12月	R1.12.16	R1.12.23	0	850	27	無無	4.8
-	1 2月 1 2月	R1.12.23	R1.12.27 R2.1.6	0	310 360	10	無無	4.6
-	1 2 月 1 月	R1.12.27 R2.1.6	R2.1.14	0	875	11 28	無無	$\frac{4.5}{4.5}$
	1 月 1 月	R2.1.6 R2.1.14	R2.1.14 R2.1.20	0	122	4	無無	4.9
	1月 1月	R2.1.14 R2.1.20	R2.1.20 R2.1.27	0	480	15	無無	5.0
	1月 1月	R2.1.20 R2.1.27	R2.1.27	0	480	15	無無	5.8
	2月	R2.2.3	R2.2.10	0	0	0	無	0.0
-	2月	R2.2.10	R2.2.17	0	1080	34	無無	4.9
-	2月	R2.2.17	R2.2.25	0	160	5	無	5.5
-	2月	R2.2.25	R2.3.2	0	447	14	無	4.8
-	3月	R2.3.2	R2.3.9	0	1538	49	無	5.2
-	3月	R2.3.9	R2.3.16	0	1620	52	無	5.4
-	3月	R2.3.16	R2.3.23	0	63	2	無	4.8
	3月	R2.3.23	R2.3.30	0	1140	36	無	5.0
<u>L</u>	0 /1	104.0.40	102.0.00	. 0	1110		7///	0.0

No.	EC	GO 2-	NO:	CI.	NTIT ±	NT ±	T7.1	Q 2±	3. 17. 9±	TT4	T into the FFF
3.8 55.1 104.3 16.6 137.7 19.7 6.4 29.4 5.2 0.3 4.71 1.0 10.3 21.6 11.8 17.6 11.0 31.7 7.0 2.0 3.6 3.380 1.3 10.7 16.4 27.4 16.9 23.5 2.3 3.0 2.8 7.4 0.000 2.1 19.0 33.5 36.2 35.8 30.5 3.1 7.7 5.0 10.0 0.94 0.9 10.5 12.4 10.1 12.2 9.4 1.1 4.4 1.7 4.5 0.488 0.7 7.3 10.6 5.9 13.3 7.1 1.7 1.9 0.9 3.0 1.279 0.3 1.6 1.6 1.6 7.0 3.3 6.0 0.3 1.5 0.5 1.7 0.70 1.0 12.4 15.7 14.7 20.2 12.3 1.1 3.0 2.4 4.6	EC	$\mathrm{SO}_4{}^{2^{-}}$	NO ₃	Cl-	$\mathrm{NH_{4}^{+}}$	Na ⁺	K+	Ca ²⁺	$\mathrm{Mg^{2+}}$	H+	不溶物質
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		55 1	104.9	16.6	1977		6.4	20.4	5.9	0.2	
1.3 10.7 16.4 27.4 16.9 23.5 2.3 3.0 2.8 7.4 0.00 2.1 19.0 33.5 36.2 35.8 30.5 31. 7.7 5.0 10.0 0.936 0.9 10.5 12.4 10.1 12.2 9.4 1.1 4.4 1.7 4.6 0.488 0.7 7.3 10.6 5.9 13.3 7.1 1.7 1.9 0.9 3.0 1.279 0.3 1.6 1.6 7.0 3.3 6.0 0.3 1.5 0.5 1.7 0.770 1.0 12.4 15.7 14.7 20.2 12.3 1.1 3.0 2.4 4.6 1.373 0.9 9.7 16.8 5.5 18.3 4.0 0.9 3.3 1.1 6.9 2.548 1.4 10.8 14.7 4.9 14.0 3.5 5.2 5.5 5.5 12.1 1.7 1											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
0.9 10.5 12.4 10.1 12.2 9.4 1.1 4.4 1.7 4.5 0.458 0.7 7.3 10.6 5.9 13.3 7.1 1.7 1.9 0.9 3.0 1.279 0.3 1.6 1.6 7.0 3.3 6.0 0.3 1.5 0.5 1.7 0.770 1.0 12.4 15.7 14.7 20.2 12.3 1.1 3.0 2.4 4.6 1.373 0.9 9.7 16.8 5.5 18.3 4.0 0.9 3.3 1.1 6.9 2.548 1.4 10.8 14.7 4.8 2.1 1.6 3.5 5.2 5.5 1.217 3.0 36.8 38.0 19.1 59.3 14.7 4.9 14.0 5.2 24.2 0.239 0.6 5.8 11.4 4.7 15.0 3.7 0.3 1.6 0.4 3.4 1.619 1.5<											
1.6											
0.3 1.6 1.6 7.0 3.3 6.0 0.3 1.5 0.5 1.7 0.70 1.0 12.4 15.7 14.7 20.2 12.3 1.1 3.0 2.4 4.6 1.373 0.9 9.7 16.8 5.5 18.3 4.0 0.9 3.3 1.1 6.9 2.548 1.4 10.8 14.7 48.2 14.6 39.7 1.6 3.5 5.2 5.5 5.1217 3.0 36.8 38.0 19.1 59.3 14.7 4.9 14.0 5.2 24.2 0.239 0.7 6.5 7.9 7.7 11.5 5.6 0.7 1.1 0.6 4.9 1.518 0.6 5.8 11.4 4.7 15.0 3.7 0.8 4.8 0.9 12.3 1.529 0.5 3.1 3.2 18.5 3.9 15.9 0.6 1.7 1.1 3.1 3.1 3.1	0.5	10.0	12.4	10.1	12,2	J.4	1.1	4.4	1.1	4.0	0.400
0.3 1.6 1.6 7.0 3.3 6.0 0.3 1.5 0.5 1.7 0.70 1.0 12.4 15.7 14.7 20.2 12.3 1.1 3.0 2.4 4.6 1.373 0.9 9.7 16.8 5.5 18.3 4.0 0.9 3.3 1.1 6.9 2.548 1.4 10.8 14.7 48.2 14.6 39.7 1.6 3.5 5.2 5.5 5.1217 3.0 36.8 38.0 19.1 59.3 14.7 4.9 14.0 5.2 24.2 0.239 0.7 6.5 7.9 7.7 11.5 5.6 0.7 1.1 0.6 4.9 1.518 0.6 5.8 11.4 4.7 15.0 3.7 0.8 4.8 0.9 12.3 1.529 0.5 3.1 3.2 18.5 3.9 15.9 0.6 1.7 1.1 3.1 3.1 3.1	0.7	7.3	10.6	5.9	13.3	7 1	1 7	1 9	0.9	3.0	1 279
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
0.9											
1.4 10.8 14.7 48.2 14.6 39.7 1.6 3.5 5.2 5.5 1.217 3.0 36.8 38.0 19.1 59.3 14.7 4.9 14.0 5.2 24.2 0.239 0.7 6.5 7.9 7.7 11.5 5.6 0.7 1.1 0.6 4.9 1.518 0.6 5.8 11.4 4.7 15.0 3.7 0.3 1.6 0.4 3.4 0.645 1.2 11.5 20.4 5.0 20.2 3.1 0.8 4.8 0.9 12.3 1.529 0.5 8.3 6.8 5.1 12.7 3.3 0.7 3.4 0.6 2.9 1.549 0.5 8.3 6.8 5.1 12.7 3.3 0.7 3.4 0.6 2.9 1.549 0.5 3.1 3.2 18.5 3.9 15.9 0.6 1.7 1.1 3.1 0.0 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>											
3.0 36.8 38.0 19.1 59.3 14.7 4.9 14.0 5.2 24.2 0.239 0.7 6.5 7.9 7.7 11.5 5.6 0.7 1.1 0.6 4.9 1.518 0.6 5.8 11.4 4.7 15.0 3.7 0.3 1.6 0.4 3.4 0.645 1.2 11.5 20.4 5.0 20.2 3.1 0.8 4.8 0.9 12.3 1.529 0.5 8.3 6.8 5.1 12.7 3.3 0.7 3.4 0.6 2.9 1.549 0.5 3.1 3.2 18.5 3.9 15.9 0.6 1.7 1.1 3.1 0.229 1.6 10.3 5.1 97.7 11.9 7.8.7 1.9 2.9 7.8 1.3 1.310 1.7 11.9 1.9 1.8 1.9 3.1 1.0 4.7 2.3 14.3 0.000						39.7					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.6	4.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6	5.8	11.4	4.7	15.0		0.3	1.6	0.4	3.4	
0.5 3.1 3.2 18.5 3.9 15.9 0.6 1.7 1.1 3.1 0.229 1.6 10.3 5.1 97.7 11.9 78.7 1.9 2.9 7.8 1.3 1.310 1.7 16.2 30.4 15.0 29.5 13.7 0.9 5.6 2.3 14.3 0.000 0.9 11.9 10.9 7.4 18.5 5.6 0.9 3.1 1.0 4.7 2.340 0.7 5.1 12.6 7.7 6.7 6.0 0.4 3.3 0.9 5.9 0.000 2.4 23.9 27.4 53.4 27.5 44.8 1.6 7.4 5.7 22.5 1.612 0.3 1.6 2.4 1.9 3.8 1.3 0.3 0.7 1.8 1.404 0.5 4.2 7.8 5.8 8.1 3.5 0.6 0.9 0.9 4.2 0.000 0.3 <td>1.2</td> <td>11.5</td> <td>20.4</td> <td>5.0</td> <td>20.2</td> <td>3.1</td> <td>0.8</td> <td></td> <td>0.9</td> <td>12.3</td> <td>1.529</td>	1.2	11.5	20.4	5.0	20.2	3.1	0.8		0.9	12.3	1.529
0.5 3.1 3.2 18.5 3.9 15.9 0.6 1.7 1.1 3.1 0.229 1.6 10.3 5.1 97.7 11.9 78.7 1.9 2.9 7.8 1.3 1.310 1.7 16.2 30.4 15.0 29.5 13.7 0.9 5.6 2.3 14.3 0.000 0.9 11.9 10.9 7.4 18.5 5.6 0.9 3.1 1.0 4.7 2.340 0.7 5.1 12.6 7.7 6.7 6.0 0.4 3.3 0.9 5.9 0.000 2.4 23.9 27.4 53.4 27.5 44.8 1.6 7.4 5.7 22.5 1.612 0.3 1.6 2.4 1.9 3.8 1.3 0.3 0.7 1.8 1.404 0.5 4.2 7.8 5.8 8.1 3.5 0.6 0.9 0.9 4.2 0.000 0.3 <td>0.5</td> <td>8.3</td> <td>6.8</td> <td>5.1</td> <td>12.7</td> <td>3.3</td> <td>0.7</td> <td>3.4</td> <td>0.6</td> <td>2.9</td> <td>1.549</td>	0.5	8.3	6.8	5.1	12.7	3.3	0.7	3.4	0.6	2.9	1.549
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	3.1	3.2	18.5	3.9	15.9	0.6		1.1	3.1	0.229
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
3.8 38.2 79.5 146.3 44.1 115.2 2.7 37.5 15.3 3.2 0.998 2.4 23.9 27.4 53.4 27.5 44.8 1.6 7.4 5.7 22.5 1.612 0.3 1.6 2.4 1.9 3.8 1.3 0.3 0.3 0.7 1.8 1.404 0.5 4.2 7.8 5.8 8.1 3.5 0.6 0.9 0.9 4.2 0.000 0.3 1.5 2.7 2.9 2.4 1.5 0.1 0.5 0.8 2.4 0.749 0.9 9.1 14.5 10.5 18.2 8.8 0.9 2.2 1.9 5.6 0.000 3.2 45.9 41.8 32.6 53.9 25.7 1.4 16.0 4.7 25.5 0.000 1.8 19.4 26.5 48.0 39.3 42.6 1.4 8.0 5.1 2.4 0.000 <td></td>											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7	5.1	12.6	7.7	6.7	6.0	0.4	3.3	0.9	5.9	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0	90.0	70.5	1400	44.1	115.0	0.7	07.5	15.0	0.0	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8	38.2	79.5	146.3	44.1	115.2	2.7	37.5	15.3	3.2	0.998
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.4	23.0	27.4	53.4	27.5	11.8	1.6	7.4	5.7	22.5	1 619
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								<u> </u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2	45.9	41.8	32.6	53.9	25.7	1.4	16.0	4.7	25.5	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8	19.4	26.5	48.0	39.3	42.6	1.4	8.0	5.1	2.4	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.8	8.5	12.9	7.6	15.6	6.5	0.5	2.5	1.1	5.5	1.549
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0	12.1	9.2	16.8	14.5	14.6	1.1	3.2	1.9	7.9	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
2.1 24.7 28.2 106.1 36.8 79.4 4.6 9.4 9.2 3.5 0.395 1.7 22.6 23.7 14.1 21.1 10.5 2.0 7.8 3.4 15.1 1.258 0.9 6.6 15.2 13.6 10.0 9.7 1.2 1.8 1.2 5.7 0.697 0.7 5.6 11.2 11.8 10.6 7.1 1.0 2.1 1.1 3.7 1.851 4.0 50.9 67.7 72.1 85.3 56.6 10.2 18.5 9.1 14.3 0.770	0.7	1.2	14.2	0.0	26.9	4.0	1.4	2.6	0.6	6.1	0.218
2.1 24.7 28.2 106.1 36.8 79.4 4.6 9.4 9.2 3.5 0.395 1.7 22.6 23.7 14.1 21.1 10.5 2.0 7.8 3.4 15.1 1.258 0.9 6.6 15.2 13.6 10.0 9.7 1.2 1.8 1.2 5.7 0.697 0.7 5.6 11.2 11.8 10.6 7.1 1.0 2.1 1.1 3.7 1.851 4.0 50.9 67.7 72.1 85.3 56.6 10.2 18.5 9.1 14.3 0.770	1 2	11 /	12.9	15.9	15.9	0.2	2.0	9 /	1 6	14.0	0.166
1.7 22.6 23.7 14.1 21.1 10.5 2.0 7.8 3.4 15.1 1.258 0.9 6.6 15.2 13.6 10.0 9.7 1.2 1.8 1.2 5.7 0.697 0.7 5.6 11.2 11.8 10.6 7.1 1.0 2.1 1.1 3.7 1.851 4.0 50.9 67.7 72.1 85.3 56.6 10.2 18.5 9.1 14.3 0.770											
0.9 6.6 15.2 13.6 10.0 9.7 1.2 1.8 1.2 5.7 0.697 0.7 5.6 11.2 11.8 10.6 7.1 1.0 2.1 1.1 3.7 1.851 4.0 50.9 67.7 72.1 85.3 56.6 10.2 18.5 9.1 14.3 0.770											
0.7 5.6 11.2 11.8 10.6 7.1 1.0 2.1 1.1 3.7 1.851 4.0 50.9 67.7 72.1 85.3 56.6 10.2 18.5 9.1 14.3 0.770											
4.0 50.9 67.7 72.1 85.3 56.6 10.2 18.5 9.1 14.3 0.770											
									2.0		

資料 2 令和元年度フィルターパック法による乾性降下物の測定結果 (環科セ)

	月	開始日時	終了日時	調査	積算流量	$SO_2(g)$	HNO ₃ (g)	HCl(g)	NH ₃ (g)
地点名	,,	pupa III a	71.5	日数	m ³	202(8)		ol/m ³	1 11110(8)
	4月	H31.4.1	H31.4.8	7	20.05	33.63	20.09	39.96	117.00
	4月	H31.4.8	H31.4.15	7	20.13	15.33	14.41	26.43	74.81
	4月	H31.4.15	H31.4.22	7	13.32	53.55	29.69	90.17	216.39
	4月	H31.4.22	H31.4.26	4	11.60	42.29	24.51	38.75	157.74
	5月	H31.4.26	R1.5.7	11	31.67	17.29	15.82	29.73	115.10
	5月	R1.5.7	R1.5.13	6	17.37	84.03	46.03	53.01	205.69
	5月	R1.5.13	R1.5.20	7	20.34	34.38	18.55	45.37	135.73
	5月	R1.5.20	R1.5.27	7	19.80	63.15	44.72	59.35	206.16
	6月	R1.5.27	R1.6.3	7	19.79	45.52	29.15	43.31	135.56
	6月	R1.6.3	R1.6.10	7	19.78	56.48	40.38	45.04	164.87
	6月	R1.6.10	R1.6.17	7	20.26	17.91	30.97	32.77	89.93
	6月	R1.6.17	R1.6.24	7	19.69	71.34	75.88	68.89	179.10
	7月注)	R1.6.24	R1.7.1	7					
	7月	R1.7.1	R1.7.8	7	19.63	69.16	69.07	48.28	211.53
	7月	R1.7.8	R1.7.16	8	24.15	46.73	42.44	41.41	122.63
	7月	R1.7.16	R1.7.22	6	17.16	50.48	31.37	29.54	165.02
	7月	R1.7.22	R1.7.29	7	19.23	52.17	58.72	61.27	174.49
	7月	R1.7.29	R1.8.5	7	20.60	91.96	86.45	88.14	187.79
	8月	R1.8.5	R1.8.13	8	24.32	47.09	18.37	68.88	196.94
	8月	R1.8.13	R1.8.19	6	18.26	37.75	18.59	90.95	152.09
	8月	R1.8.19	R1.8.26	7	20.83	47.08	52.37	58.91	151.33
	8月	R1.8.26	R1.9.2	7	22.89	48.69	30.38	47.64	165.36
	9月	R1.9.2	R1.9.9	7	20.70	42.67	37.52	48.65	150.04
	9月	R1.9.9	R1.9.17	8	23.35	41.38	37.27	66.44	151.59
	9月	R1.9.17	R1.9.24	7	22.07	33.42	21.14	43.25	121.34
環科セ	9月	R1.9.24	R1.9.30	6	18.72	56.36	29.44	50.89	154.98
坂14 ピ	10 月	R1.9.30	R1.10.7	7	20.89	34.42	30.69	50.65	130.83
	10月	R1.10.7	R1.10.15	8	24.12	29.15	17.57	33.50	118.48
	10月	R1.10.15	R1.10.21	6	18.60	29.96	15.38	31.55	103.34
	10月	R1.10.21	R1.10.28	7	20.52	22.91	14.98	25.94	108.16
	11 月	R1.10.28	R1.11.5	8	24.58	41.55	29.10	44.87	140.10
	11 月	R1.11.5	R1.11.11	6	16.92	35.85	36.40	61.84	140.40
	11 月	R1.11.11	R1.11.18	7	20.96	28.12	10.37	21.73	109.87
	11月	R1.11.18	R1.11.25	7	20.41	36.80	32.84	34.91	171.57
	12月	R1.11.25	R1.12.2	7	20.68	37.01	10.77	23.46	82.47
	12月	R1.12.2	R1.12.9	7	20.44	19.41	6.13	15.92	69.24
	12月	R1.12.9	R1.12.16	7	20.44	43.63	9.76	24.82	127.39
	12月	R1.12.16	R1.12.23	7	20.42	27.09	7.29	21.12	98.89
	12月	R1.12.23	R1.12.27	4	13.54	28.59	9.67	20.10	144.63
	12月	R1.12.27	R2.1.6	10	29.35	11.35	6.82	21.15	55.65
	1月	R2.1.6	R2.1.14	8	21.14	11.67	7.52	19.23	85.50
	1月	R2.1.14	R2.1.20	6	20.82	26.91	6.64	16.97	75.52
	1月	R2.1.20	R2.1.27	7	29.32	27.91	6.47	16.67	63.76
	1月	R2.1.27	R2.2.3	7	18.03	16.41	9.53	20.69	88.82
	2月	R2.2.3	R2.2.10	7	21.14	21.26	8.37	21.76	72.95
	2月	R2.2.10	R2.2.17	7	20.82	22.86	8.36	21.29	93.33
	2月	R2.2.17	R2.2.25	8	24.32	22.27	9.11	26.23	86.43
	2月	R2.2.25	R2.3.2 R2.3.9	6 7	18.03	27.80	11.41	30.21	114.71
	3月	R2.3.2		7	21.32	25.90	10.16	26.56	102.77
	3月	R2.3.9	R2.3.16		22.47	25.59	11.57	25.08	146.14
	3月 3月	R2.3.16 R2.3.23	R2.3.23 R2.3.30	7	21.36 20.32	45.84 24.94	20.76 12.95	51.76 29.59	172.42
	0月	114.0.40	114.0.00	1	40.04	44.34	14.50	49.00	124.04

SO ₄ 2·(p)	nss-SO ₄ ² ·(p)	NO_3 (p)	HCl(p)	Na ⁺ (p)	K+(p)	Ca ²⁺ (p)	nss-Ca ²⁺ (p)	Mg ²⁺ (p)	NH ₄ +(p)
39.0	36.8	45.9	16.1	36.9	5.8	15.0	14.2	5.7	n mol/m3 77.7
16.2	14.0	22.7	22.8	36.0	2.8	6.4	5.6	4.3	29.3
61.6	54.4	108.9	56.0	119.7	7.1	18.5	15.9	15.6	114.2
37.8	35.3	34.2	21.1	41.6	3.6	11.2	10.3	5.8	75.1
22.5	20.7	27.2	9.5	29.2	2.8	9.3	8.7	4.3	36.6
39.5	37.9	41.9	7.3	27.5	4.3	14.7	14.1	4.5	75.5
32.6	25.7	38.6	90.0	114.9	4.2	10.0	7.5	13.1	45.1
41.5	39.8	37.4	6.4	28.8	6.7	16.7	16.1	5.3	75.4
49.2	47.0	45.9	8.9	35.6	3.4	11.2	10.4	5.6	72.3
44.4	43.0	45.8	5.8	23.2	3.2	11.7	11.2	4.5	68.1
21.8	20.2	17.1	14.4	26.9	2.5	6.2	5.6	3.6	19.8
77.9	76.2	31.3	3.0	28.0	3.5	12.4	11.8	4.7	99.4
39.6	38.9	13.5	2.3	11.7	2.8	7.3	7.0	2.3	46.5
31.2	29.7	34.5	4.3	23.3	1.8	6.1	5.6	3.4	48.2
25.9	24.7	20.7	7.4	19.9	3.0	4.9	4.5	2.7	27.9
61.0	59.6	14.3	2.7	23.2	3.7	6.7	6.2	3.8	72.0
88.4	86.9	19.9	2.9	25.4	2.8	11.7	11.1	4.5	108.7
22.4	17.5	47.0	45.4	81.1	3.0	11.2	9.5	8.7	16.8
66.6	57.7	47.3	90.4	148.3	5.5	9.0	5.8	16.3	67.5
60.1	58.6	16.0	2.5	25.1	2.9	8.5	8.0	3.6	82.3
39.1	37.9	18.2	2.6	19.8	3.8	9.0	8.6	3.2	51.7
32.2	30.6	21.3	6.9	26.1	2.6	7.5	7.0	3.3	36.1
32.4	28.9	39.2	23.3	58.6	3.2	12.4	11.1	6.4	39.8
24.8	21.6	29.8	29.7	53.1	3.2	9.7	8.6	5.6	21.9
22.0	19.5	35.0	12.5	41.3	2.9	8.2	7.4	4.4	24.2
38.7	35.5	32.8	22.4	53.3	3.1	9.8	8.6	6.3	41.8
16.3	13.6	25.6	27.3	45.0	3.4	8.7	7.8	4.9	9.3
16.7	15.2	29.8	8.0	25.3	2.8	7.1	6.5	2.7	20.1
17.5	16.4	19.5	5.8	18.9	2.6	4.9	4.5	2.4	22.2
41.5	39.3	50.6	13.0	37.1	5.5	17.6	16.8	6.5	44.7
21.8	19.2	42.5	34.8	42.5	5.0	12.0	11.1	5.0	43.4
12.6	11.4	17.2	8.9	20.1	2.8	5.7	5.3	1.9	22.1
8.0	6.7	13.5	11.5	21.3	1.9	3.9	3.5	2.2	9.9
16.6	15.5	26.1	17.1	17.7	1.5	5.5	5.2	1.7	33.7
14.2	12.8	15.6	22.3	21.8	1.2	3.7	3.3	1.9	24.4
25.8	22.5	52.9	58.4	54.1	14.3	11.6	10.4	4.1	50.0
25.5 18.4	23.8 17.8	45.6 35.5	28.2	$\frac{28.2}{10.4}$	$\frac{2.6}{2.0}$	$\frac{7.8}{7.0}$	7.2 6.8	3.0	49.1 54.7
20.3	18.8	$\frac{33.5}{24.0}$	21.6	$\frac{10.4}{25.7}$	$\frac{2.0}{1.4}$	2.8	2.2	$\frac{1.1}{2.6}$	32.3
17.5	15.8	29.2	29.7	$\frac{25.7}{27.5}$	$\frac{1.4}{2.1}$	3.9	3.3	$\frac{2.6}{2.5}$	
14.4	13.5	29.2	15.2	13.5	1.4	4.2	3.9	1.2	$\frac{35.3}{37.2}$
22.8	21.8	37.9	19.1	17.0	1.7	5.2	4.8	1.8	49.3
12.0	10.8	22.7	19.4	19.8	1.8	4.0	3.6	1.6	24.2
19.9	18.4	22.4	26.7	24.0	3.9	6.1	5.6	3.4	51.8
25.1	23.9	55.2	26.9	19.3	7.5	5.7	5.2	2.1	97.4
27.1	24.9	46.3	37.4	37.4	6.5	7.7	6.9	4.9	67.0
24.2	22.7	33.4	25.1	25.2	5.5	7.8	7.2	3.3	51.3
22.3	19.9	34.7	37.8	38.7	4.2	4.4	3.6	4.1	57.3
20.8	19.1	30.9	23.0	28.0	4.1	5.8	5.2	4.2	44.0
34.7	30.4	64.5	57.2	72.2	10.4	11.0	9.5	8.7	69.9
20.3	18.9	32.7	19.1	22.0	4.4	4.6	4.1	2.5	51.6

注) R1.6.24-R1.7.1 は採取時に漏れがあったため欠測とした。